29.3 代码生成模块

18 分钟阅读

29.3.1 代码生成概述#

代码生成模块是编程 Agent 的核心能力之一,它能够根据自然语言描述生成高质量的代码。代码生成涉及需求理解、架构设计、代码实现等多个环节。

代码生成流程#

用户需求 ↓ 需求分析与理解 ↓ 架构设计 ↓ 代码实现 ↓ 代码验证 ↓ 优化与改进 ↓ 最终代码

29.3.2 需求分析#

需求提取器#

python
python class RequirementExtractor: """需求提取器""" def __init__(self, llm_client: LLMClient): self.llm_client = llm_client async def extract(self, user_request: str) -> Requirement: """提取需求""" prompt = f""" 分析用户需求,提取关键信息: 用户需求:{user_request} 请提取以下信息: 1. 功能需求(需要实现什么功能) 2. 技术栈(使用的编程语言、框架等) 3. 约束条件(性能、安全、兼容性等) 4. 输入输出(预期的输入和输出) 5. 特殊要求(代码风格、注释要求等) 以 JSON 格式返回结果。 """ response = await self.llm_client.complete(prompt) return self._parse_requirement(response) def _parse_requirement(self, response: str) -> Requirement: """解析需求""" try: data = json.loads(response) return Requirement( functional_requirements=data.get('functional_requirements', []), tech_stack=data.get('tech_stack', {}), constraints=data.get('constraints', {}), inputs=data.get('inputs', []), outputs=data.get('outputs', []), special_requirements=data.get('special_requirements', {}) ) except json.JSONDecodeError: raise ValueError("Invalid requirement format") ```### 需求验证器 class RequirementValidator: """需求验证器""" def validate(self, requirement: Requirement) -> ValidationResult: """验证需求""" issues = [] # 检查功能需求 if not requirement.functional_requirements: issues.append("No functional requirements specified") # 检查技术栈 if not requirement.tech_stack: issues.append("No tech stack specified") # 检查约束条件 if 'performance' in requirement.constraints: perf = requirement.constraints['performance'] if not isinstance(perf, dict) or 'max_time' not in perf: issues.append("Invalid performance constraint") return ValidationResult( valid=len(issues) == 0, issues=issues )

29.3.3 架构设计#

架构设计器#

python
```python class ArchitectureDesigner: """架构设计器""" def __init__(self, llm_client: LLMClient): self.llm_client = llm_client self.design_patterns = self._load_design_patterns() async def design(self, requirement: Requirement) -> Architecture: """设计架构""" prompt = f""" 根据需求设计软件架构: 功能需求:{requirement.functional_requirements} 技术栈:{requirement.tech_stack} 约束条件:{requirement.constraints} 请设计: 1. 系统架构(模块划分、层次结构) 2. 类设计(类、接口、继承关系) 3. 数据结构(数据模型、存储方案) 4. 接口设计(API、函数签名) 5. 设计模式(适用的设计模式) 以 JSON 格式返回架构设计。 """ response = await self.llm_client.complete(prompt) return self._parse_architecture(response) def _parse_architecture(self, response: str) -> Architecture: """解析架构""" try: data = json.loads(response) return Architecture( system_architecture=data.get('system_architecture', {}), class_design=data.get('class_design', []), data_structures=data.get('data_structures', []), interfaces=data.get('interfaces', []), design_patterns=data.get('design_patterns', []) ) except json.JSONDecodeError: raise ValueError("Invalid architecture format") def _load_design_patterns(self) -> Dict[str, DesignPattern]: """加载设计模式""" return { 'singleton': DesignPattern( name='Singleton', description='确保一个类只有一个实例', 适用场景='需要全局唯一访问点' ), 'factory': DesignPattern( name='Factory', description='创建对象的接口', 适用场景='需要灵活创建对象' ), 'observer': DesignPattern( name='Observer', description='定义对象间的一对多依赖', 适用场景='需要事件通知机制' ) } ```### 架构评估器 class ArchitectureEvaluator: """架构评估器""" def evaluate(self, architecture: Architecture, requirement: Requirement) -> EvaluationResult: """评估架构""" scores = {} # 评估模块化 scores['modularity'] = self._evaluate_modularity(architecture) # 评估可扩展性 scores['extensibility'] = self._evaluate_extensibility(architecture) # 评估性能 scores['performance'] = self._evaluate_performance( architecture, requirement ) # 评估可维护性 scores['maintainability'] = self._evaluate_maintainability(architecture) # 计算总分 total_score = sum(scores.values()) / len(scores) return EvaluationResult( total_score=total_score, scores=scores, recommendations=self._generate_recommendations(scores) ) def _evaluate_modularity(self, architecture: Architecture) -> float: """评估模块化""" # 检查模块划分 modules = architecture.system_architecture.get('modules', []) if not modules: return 0.0 # 模块越多,模块化程度越高 score = min(len(modules) / 10.0, 1.0) return score def _evaluate_extensibility(self, architecture: Architecture) -> float: """评估可扩展性""" # 检查设计模式使用 patterns = architecture.design_patterns if not patterns: return 0.5 # 使用设计模式提高可扩展性 score = 0.5 + min(len(patterns) / 5.0, 0.5) return score def _evaluate_performance(self, architecture: Architecture,

requirement: Requirement) -> float: """评估性能"""

检查性能约束

constraints = requirement.constraints.get('performance', {}) if not constraints: return 0.8 # 默认分数

评估架构是否满足性能要求

score = 0.8 # 基础分数

检查缓存策略

if 'caching' in architecture.system_architecture: score += 0.1

检查并发处理

if 'concurrency' in architecture.system_architecture: score += 0.1 return min(score, 1.0) def _evaluate_maintainability(self, architecture: Architecture) -> float: """评估可维护性"""

检查类设计

classes = architecture.class_design if not classes: return 0.5

评估类的复杂度

avg_methods = sum( len(c.get('methods', [])) for c in classes ) / len(classes)

方法数量适中,可维护性高

if 5 <= avg_methods <= 15: score = 1.0 elif avg_methods < 5: score = 0.8 else: score = 0.6 return score def _generate_recommendations(self, scores: Dict[str, float]) -> List[str]: """生成建议""" recommendations = [] if scores['modularity'] < 0.7: recommendations.append( "建议增加模块划分,提高模块化程度" ) if scores['extensibility'] < 0.7: recommendations.append( "建议使用更多设计模式,提高可扩展性" ) if scores['maintainability'] < 0.7: recommendations.append( "建议简化类设计,降低复杂度" ) return recommendations

bash
## 29.3.4 代码实现

### 代码生成器

```python
```python

class CodeGenerator:
    """代码生成器"""

    def __init__(self, llm_client: LLMClient):
        self.llm_client = llm_client
        self.code_templates = self._load_code_templates()

    async def generate(self, architecture: Architecture,
                      requirement: Requirement) -> GeneratedCode:
        """生成代码"""

        # 生成类代码
        class_codes = []
        for class_design in architecture.class_design:
            code = await self._generate_class_code(
                class_design,
                requirement
            )
            class_codes.append(code)

        # 生成接口代码
        interface_codes = []
        for interface in architecture.interfaces:
            code = await self._generate_interface_code(
                interface,
                requirement
            )
            interface_codes.append(code)

        # 生成主程序代码
        main_code = await self._generate_main_code(
            architecture,
            requirement
        )

        # 组合所有代码
        full_code = self._combine_codes(
            class_codes,
            interface_codes,
            main_code
        )

        return GeneratedCode(
            full_code=full_code,
            class_codes=class_codes,
            interface_codes=interface_codes,
            main_code=main_code
        )

    async def _generate_class_code(self, class_design: Dict,
                                  requirement: Requirement) -> str:
        """生成类代码"""
        prompt = f"""
        根据类设计生成代码:

        类名:{class_design.get('name')}
        方法:{class_design.get('methods', [])}
        属性:{class_design.get('attributes', [])}
        父类:{class_design.get('parent', 'None')}
        编程语言:{requirement.tech_stack.get('language', 'Python')}

        请生成完整的类代码,包括:
        1. 类定义
        2. 所有方法的实现
        3. 必要的注释
        4. 错误处理
        """

        return await self.llm_client.complete(prompt)

    async def _generate_interface_code(self, interface: Dict,
                                       requirement: Requirement) -> str:
        """生成接口代码"""
        prompt = f"""
        根据接口设计生成代码:

        接口名:{interface.get('name')}
        方法:{interface.get('methods', [])}
        编程语言:{requirement.tech_stack.get('language', 'Python')}

        请生成完整的接口代码。
        """

        return await self.llm_client.complete(prompt)

    async def _generate_main_code(self, architecture: Architecture,
                                  requirement: Requirement) -> str:
        """生成主程序代码"""
        prompt = f"""
        根据架构和需求生成主程序代码:

        功能需求:{requirement.functional_requirements}
        类:{[c.get('name') for c in architecture.class_design]}
        接口:{[i.get('name') for i in architecture.interfaces]}
        编程语言:{requirement.tech_stack.get('language', 'Python')}

        请生成主程序代码,包括:
        1. 初始化代码
        2. 主要业务逻辑
        3. 示例用法
        """

        return await self.llm_client.complete(prompt)

    def _combine_codes(self, class_codes: List[str],
                      interface_codes: List[str],
                      main_code: str) -> str:
        """组合代码"""
        combined = []

        # 添加导入
        combined.append("# Generated Code")
        combined.append("")

        # 添加接口
        if interface_codes:
            combined.append("# Interfaces")
            for code in interface_codes:
                combined.append(code)
                combined.append("")

        # 添加类
        if class_codes:
            combined.append("# Classes")
            for code in class_codes:
                combined.append(code)
                combined.append("")

        # 添加主程序
        combined.append("# Main Program")
        combined.append(main_code)

        return "\n".join(combined)

```### 代码优化器

class CodeOptimizer:
"""代码优化器"""
def __init__(self, llm_client: LLMClient):
self.llm_client = llm_client
async def optimize(self, code: str,
requirement: Requirement) -> OptimizedCode:
"""优化代码"""
# 分析代码问题
issues = await self._analyze_issues(code)
# 生成优化建议
suggestions = await self._generate_suggestions(
code,
issues,
requirement
)
# 应用优化
optimized_code = await self._apply_optimizations(
code,
suggestions
)
return OptimizedCode(
original_code=code,
optimized_code=optimized_code,
issues=issues,
suggestions=suggestions
)
async def _analyze_issues(self, code: str) -> List[CodeIssue]:
"""分析代码问题"""
prompt = f"""
分析以下代码的问题:
{code}
请识别:
1. 性能问题
2. 安全问题
3. 代码风格问题
4. 潜在的 bug
5. 可维护性问题
以 JSON 格式返回问题列表。
"""
response = await self.llm_client.complete(prompt)
return self._parse_issues(response)
async def _generate_suggestions(self, code: str,
issues: List[CodeIssue],
requirement: Requirement) -> List[Suggestion]:
"""生成优化建议"""
prompt = f"""
基于代码问题生成优化建议:
代码:{code}
问题:{issues}
约束条件:{requirement.constraints}
请生成具体的优化建议,包括:
1. 问题描述
2. 优化方案
3. 预期效果
以 JSON 格式返回建议列表。
"""
response = await self.llm_client.complete(prompt)
return self._parse_suggestions(response)
async def _apply_optimizations(self, code: str,
suggestions: List[Suggestion]) -> str:
"""应用优化"""
optimized_code = code
for suggestion in suggestions:
if suggestion.applicable:
optimized_code = await self._apply_suggestion(
optimized_code,
suggestion
)
return optimized_code
async def _apply_suggestion(self, code: str,
suggestion: Suggestion) -> str:
"""应用单个建议"""
prompt = f"""
应用以下优化建议到代码:
原始代码:{code}
优化建议:{suggestion.description}
优化方案:{suggestion.solution}
请返回优化后的代码。
"""
return await self.llm_client.complete(prompt)

29.3.5 代码验证#

代码验证器#

python
```python class CodeValidator: """代码验证器""" def __init__(self, tool_manager: ToolManager): self.tool_manager = tool_manager async def validate(self, code: str, requirement: Requirement) -> ValidationResult: """验证代码""" results = [] # 语法检查 syntax_result = await self._check_syntax(code, requirement) results.append(syntax_result) # 类型检查 type_result = await self._check_types(code, requirement) results.append(type_result) # 逻辑检查 logic_result = await self._check_logic(code, requirement) results.append(logic_result) # 性能检查 performance_result = await self._check_performance( code, requirement ) results.append(performance_result) # 综合结果 all_passed = all(r.passed for r in results) return ValidationResult( passed=all_passed, results=results, issues=self._collect_issues(results) ) async def _check_syntax(self, code: str, requirement: Requirement) -> CheckResult: """检查语法""" language = requirement.tech_stack.get('language', 'python') try: if language == 'python': result = await self._check_python_syntax(code) else: result = CheckResult( check_type='syntax', passed=True, message=f"Syntax check for {language} not implemented" ) return result except Exception as e: return CheckResult( check_type='syntax', passed=False, message=f"Syntax error: {str(e)}" ) async def _check_python_syntax(self, code: str) -> CheckResult: """检查 Python 语法""" try: compile(code, '<string>', 'exec') return CheckResult( check_type='syntax', passed=True, message="Syntax is valid" ) except SyntaxError as e: return CheckResult( check_type='syntax', passed=False, message=f"Syntax error at line {e.lineno}: {e.msg}" ) async def _check_types(self, code: str, requirement: Requirement) -> CheckResult: """检查类型""" # 使用类型检查工具 tool = self.tool_manager.get_tool('type_checker') if not tool: return CheckResult( check_type='type', passed=True, message="Type checker not available" ) try: result = await tool.execute({'code': code}) if result.success: return CheckResult( check_type='type', passed=True, message="Type check passed" ) else: return CheckResult( check_type='type', passed=False, message=f"Type check failed: {result.error}" ) except Exception as e: return CheckResult( check_type='type', passed=False, message=f"Type check error: {str(e)}" ) async def _check_logic(self, code: str, requirement: Requirement) -> CheckResult: """检查逻辑""" # 分析代码逻辑 issues = [] # 检查空指针 if 'None' in code and 'if' not in code: issues.append("Potential None reference without check") # 检查资源泄漏 if 'open(' in code and 'close(' not in code: issues.append("Potential resource leak (file not closed)") if issues: return CheckResult( check_type='logic', passed=False, message=f"Logic issues: {', '.join(issues)}" ) else: return CheckResult( check_type='logic', passed=True, message="Logic check passed" ) async def _check_performance(self, code: str, requirement: Requirement) -> CheckResult: """检查性能""" issues = [] # 检查嵌套循环 if code.count('for ') > 2: issues.append("Deep nested loops may cause performance issues") # 检查大列表操作 if 'list(' in code and 'range(' in code: issues.append("Consider using generator expressions for large ranges") if issues: return CheckResult( check_type='performance', passed=False, message=f"Performance issues: {', '.join(issues)}" ) else: return CheckResult( check_type='performance', passed=True, message="Performance check passed" ) def _collect_issues(self, results: List[CheckResult]) -> List[str]: """收集所有问题""" issues = [] for result in results: if not result.passed: issues.append(result.message) return issues

通过实现这些组件,我们可以构建一个完整的代码生成模块,能够从需求分析到代码验证的全流程自动化。

标记本节教程为已读

记录您的学习进度,方便后续查看。